mers/mers_lib/src/program/configs/gen/mod.rs

460 lines
14 KiB
Rust

pub mod function;
use std::sync::{Arc, RwLock};
use crate::data::{self, bool::bool_type, Data, MersData, Type};
pub trait FromMersData: Sized {
fn as_type_from() -> Type;
fn can_represent(t: &Type) -> bool;
/// **NOTE: `f` may only used the passed value of type `Self` during the call to `f`**.
/// Storing the value anywhere, moving it to a thread or otherwise assuming that it lives longer than the function call
/// violates Rust's lifetime rules, but is allowed by the compiler because of some `unsafe` code which
/// calls `f` with a `Self` type with a lifetime that is incorrect on purpose (but seemingly necessary for this to work at all).
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O;
}
pub trait ToMersData {
/// what type this will become when `represent` is called
fn as_type_to() -> Type;
fn represent(self) -> Data;
}
/// Generates types like `(A)/()`. If `A` is a tuple-type, consider using `AnyOrNone` instead.
pub struct OneOrNone<A>(pub Option<A>);
/// Mainly used to generate types like `(A, B)/()` where `OneOrNone` would generate `((A, B))/()`, but can also generate `A/()`
pub struct AnyOrNone<A>(pub Option<A>);
impl<A: FromMersData> FromMersData for OneOrNone<A> {
fn as_type_from() -> Type {
Type::newm(vec![
Arc::new(data::tuple::TupleT(vec![A::as_type_from()])),
Arc::new(data::tuple::TupleT(vec![])),
])
}
fn can_represent(t: &Type) -> bool {
t.one_tuple_possible_content()
.is_some_and(|t| A::can_represent(&t))
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if let Some(v) = d
.as_any()
.downcast_ref::<data::tuple::Tuple>()
.filter(|v| v.0.len() <= 1)
{
if v.0.is_empty() {
f(Some(Self(None)))
} else {
A::try_represent(v.0[0].get().as_ref(), |v1| {
if let Some(va) = v1 {
f(Some(Self(Some(va))))
} else {
f(None)
}
})
}
} else {
f(None)
}
}
}
impl<A: ToMersData> ToMersData for OneOrNone<A> {
fn as_type_to() -> Type {
Type::newm(vec![
Arc::new(data::tuple::TupleT(vec![A::as_type_to()])),
Arc::new(data::tuple::TupleT(vec![])),
])
}
fn represent(self) -> Data {
if let Some(v) = self.0 {
Data::one_tuple(v.represent())
} else {
Data::empty_tuple()
}
}
}
impl<A: FromMersData> FromMersData for AnyOrNone<A> {
fn as_type_from() -> Type {
Type::newm(vec![
Arc::new(data::tuple::TupleT(vec![A::as_type_from()])),
Arc::new(data::tuple::TupleT(vec![])),
])
}
fn can_represent(t: &Type) -> bool {
t.one_tuple_possible_content()
.is_some_and(|t| A::can_represent(&t))
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if d.as_any()
.downcast_ref::<data::tuple::Tuple>()
.is_some_and(|v| v.0.is_empty())
{
f(Some(Self(None)))
} else {
A::try_represent(d, |v1| {
if let Some(va) = v1 {
f(Some(Self(Some(va))))
} else {
f(None)
}
})
}
}
}
impl<A: ToMersData> ToMersData for AnyOrNone<A> {
fn as_type_to() -> Type {
let mut o = A::as_type_to();
o.add_all(&Type::empty_tuple());
o
}
fn represent(self) -> Data {
if let Some(v) = self.0 {
v.represent()
} else {
Data::empty_tuple()
}
}
}
pub enum OneOf<A, B> {
A(A),
B(B),
}
impl<A: FromMersData, B: FromMersData> FromMersData for OneOf<A, B> {
fn as_type_from() -> Type {
let mut o = A::as_type_from();
o.add_all(&B::as_type_from());
o
}
fn can_represent(t: &Type) -> bool {
A::can_represent(t) || B::can_represent(t)
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
A::try_represent(d, |v| {
if let Some(v) = v {
f(Some(OneOf::A(v)))
} else {
B::try_represent(d, |v| {
if let Some(v) = v {
f(Some(OneOf::B(v)))
} else {
f(None)
}
})
}
})
}
}
impl<A: ToMersData, B: ToMersData> ToMersData for OneOf<A, B> {
fn as_type_to() -> Type {
let mut o = A::as_type_to();
o.add_all(&B::as_type_to());
o
}
fn represent(self) -> Data {
match self {
Self::A(v) => v.represent(),
Self::B(v) => v.represent(),
}
}
}
pub struct IterToList<T: ToMersData, I: Iterator<Item = T>>(pub I);
impl<T: ToMersData, I: Iterator<Item = T>> ToMersData for IterToList<T, I> {
fn as_type_to() -> Type {
Type::new(super::with_list::ListT(T::as_type_to()))
}
fn represent(self) -> Data {
Data::new(super::with_list::List(
self.0
.map(|v| Arc::new(RwLock::new(v.represent())))
.collect(),
))
}
}
impl FromMersData for () {
fn as_type_from() -> Type {
Self::as_type_to()
}
fn can_represent(t: &Type) -> bool {
t.is_zero_tuple()
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
f(d.as_any()
.downcast_ref::<data::tuple::Tuple>()
.is_some_and(|v| v.0.is_empty())
.then_some(()))
}
}
impl ToMersData for () {
fn as_type_to() -> Type {
Type::empty_tuple()
}
fn represent(self) -> Data {
Data::empty_tuple()
}
}
impl<A: FromMersData> FromMersData for (A,) {
fn as_type_from() -> Type {
Type::new(data::tuple::TupleT(vec![A::as_type_from()]))
}
fn can_represent(t: &Type) -> bool {
t.is_included_in(&Self::as_type_from())
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if let Some(v) = d
.as_any()
.downcast_ref::<data::tuple::Tuple>()
.filter(|v| v.0.len() == 1)
{
A::try_represent(v.0[0].get().as_ref(), |v1| {
if let Some(va) = v1 {
f(Some((va,)))
} else {
f(None)
}
})
} else {
f(None)
}
}
}
impl<A: ToMersData> ToMersData for (A,) {
fn as_type_to() -> Type {
Type::new(data::tuple::TupleT(vec![A::as_type_to()]))
}
fn represent(self) -> Data {
Data::new(data::tuple::Tuple(vec![self.0.represent()]))
}
}
impl<A: FromMersData, B: FromMersData> FromMersData for (A, B) {
fn as_type_from() -> Type {
Type::new(data::tuple::TupleT(vec![
A::as_type_from(),
B::as_type_from(),
]))
}
fn can_represent(t: &Type) -> bool {
t.is_included_in(&Self::as_type_from())
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if let Some(v) = d
.as_any()
.downcast_ref::<data::tuple::Tuple>()
.filter(|v| v.0.len() == 2)
{
A::try_represent(v.0[0].get().as_ref(), |v1| {
if let Some(va) = v1 {
B::try_represent(v.0[1].get().as_ref(), |v2| {
if let Some(vb) = v2 {
f(Some((va, vb)))
} else {
f(None)
}
})
} else {
f(None)
}
})
} else {
f(None)
}
}
}
impl<A: ToMersData, B: ToMersData> ToMersData for (A, B) {
fn as_type_to() -> Type {
Type::new(data::tuple::TupleT(vec![A::as_type_to(), B::as_type_to()]))
}
fn represent(self) -> Data {
Data::new(data::tuple::Tuple(vec![
self.0.represent(),
self.1.represent(),
]))
}
}
impl<A: FromMersData, B: FromMersData, C: FromMersData> FromMersData for (A, B, C) {
fn as_type_from() -> Type {
Type::new(data::tuple::TupleT(vec![
A::as_type_from(),
B::as_type_from(),
C::as_type_from(),
]))
}
fn can_represent(t: &Type) -> bool {
t.is_included_in(&Self::as_type_from())
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if let Some(v) = d
.as_any()
.downcast_ref::<data::tuple::Tuple>()
.filter(|v| v.0.len() == 2)
{
A::try_represent(v.0[0].get().as_ref(), |v1| {
if let Some(va) = v1 {
B::try_represent(v.0[1].get().as_ref(), |v2| {
if let Some(vb) = v2 {
C::try_represent(v.0[2].get().as_ref(), |v3| {
if let Some(vc) = v3 {
f(Some((va, vb, vc)))
} else {
f(None)
}
})
} else {
f(None)
}
})
} else {
f(None)
}
})
} else {
f(None)
}
}
}
impl<A: ToMersData, B: ToMersData, C: ToMersData> ToMersData for (A, B, C) {
fn as_type_to() -> Type {
Type::new(data::tuple::TupleT(vec![
A::as_type_to(),
B::as_type_to(),
C::as_type_to(),
]))
}
fn represent(self) -> Data {
Data::new(data::tuple::Tuple(vec![
self.0.represent(),
self.1.represent(),
self.2.represent(),
]))
}
}
impl FromMersData for bool {
fn as_type_from() -> Type {
Self::as_type_to()
}
fn can_represent(t: &Type) -> bool {
t.is_included_in(&bool_type())
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if let Some(v) = d.as_any().downcast_ref::<data::bool::Bool>() {
f(Some(v.0))
} else {
f(None)
}
}
}
impl ToMersData for bool {
fn as_type_to() -> Type {
bool_type()
}
fn represent(self) -> Data {
Data::new(data::bool::Bool(self))
}
}
impl FromMersData for u8 {
fn as_type_from() -> Type {
Self::as_type_to()
}
fn can_represent(t: &Type) -> bool {
t.is_included_in(&Type::new(data::byte::ByteT))
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if let Some(v) = d.as_any().downcast_ref::<data::byte::Byte>() {
f(Some(v.0))
} else {
f(None)
}
}
}
impl ToMersData for u8 {
fn as_type_to() -> Type {
Type::new(data::byte::ByteT)
}
fn represent(self) -> Data {
Data::new(data::byte::Byte(self))
}
}
/// An integer within the range `N..=M`
pub struct IntR<const N: isize, const M: isize>(pub isize);
impl<const N: isize, const M: isize> FromMersData for IntR<N, M> {
fn as_type_from() -> Type {
Self::as_type_to()
}
fn can_represent(t: &Type) -> bool {
t.is_included_in(&Type::new(data::int::IntT(N, M)))
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if let Some(v) = d.as_any().downcast_ref::<data::int::Int>() {
if N <= v.0 && v.0 <= M {
f(Some(Self(v.0)))
} else {
f(None)
}
} else {
f(None)
}
}
}
impl<const N: isize, const M: isize> ToMersData for IntR<N, M> {
fn as_type_to() -> Type {
Type::new(data::int::IntT(N, M))
}
fn represent(self) -> Data {
Data::new(data::int::Int(self.0))
}
}
impl FromMersData for f64 {
fn as_type_from() -> Type {
Self::as_type_to()
}
fn can_represent(t: &Type) -> bool {
t.is_included_in(&Type::new(data::float::FloatT))
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if let Some(v) = d.as_any().downcast_ref::<data::float::Float>() {
f(Some(v.0))
} else {
f(None)
}
}
}
impl ToMersData for f64 {
fn as_type_to() -> Type {
Type::new(data::float::FloatT)
}
fn represent(self) -> Data {
Data::new(data::float::Float(self))
}
}
impl FromMersData for &str {
fn as_type_from() -> Type {
String::as_type_to()
}
fn can_represent(t: &Type) -> bool {
t.is_included_in(&Type::new(data::string::StringT))
}
fn try_represent<O, F: FnOnce(Option<Self>) -> O>(d: &(impl MersData + ?Sized), f: F) -> O {
if let Some(v) = d.as_any().downcast_ref::<data::string::String>() {
let v = v.0.as_str();
unsafe { f(Some(std::ptr::from_ref(v).as_ref().unwrap())) }
} else {
f(None)
}
}
}
impl ToMersData for String {
fn as_type_to() -> Type {
Type::new(data::string::StringT)
}
fn represent(self) -> Data {
Data::new(data::string::String(self))
}
}